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ABSTRACT

Although many patients develop cognitive decline, their trajectories of cognitive decline are diverse and
incompletely understood. Accurate prediction of the cognitive decline process is critical for early treatment
and management of dementia. We used the Clinical Dementia Rating Score Sum of Boxes (CDR SUM) score
as a cognitive decline proxy, and investigated factors that are potentially associated with cognitive decline,
including duration, age at onset, sex, education, health-related symptoms, and neuropsychiatric symptoms.
We analyzed data from an established 10-year longitudinal patient registry of patients diagnosed with
non-normal cognition. We compared a multi-level polynomial regression model and two semiparametric
mixed-effects models, and applied Nakagawa and Schielzeth’s RZ,,,., and correlation coefficient as model
selection criteria. The semiparametric method was selected to describe and predict the cognitive decline
trajectory. Neuropsychiatric symptoms were indicators of a higher CDR SUM score. History of stroke,
presence of disinhibition, and nighttime behavior disturbances were also associated with higher CDR SUM
score. Older age of onset (> 86 years), educational level higher than high school education (> 12 education
years), and the presence of irritation were indicators of slower cognitive decline. The semiparametric model
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can assist in estimating cognitive decline in terms of CDR SUM score, given individual characteristics.

1. Introduction

Dementia is a devastating disease and highly prevalent in
older adults. People with dementia experience loss of cognitive
function to the extent that it interferes with their social and/or
occupational functions. Symptoms include a loss of the ability
to think, remember, and reason. Late symptoms may include the
loss of muscle and reflex function, which can lead to difficulties
in swallowing and coughing (National Institutes of Health,
2013). Alzheimer’s is the sixth-leading cause of death in the
United States and the fifth-leading cause of death for individuals
age 65 and older (Alzheimer’s Association, 2013).

Alzheimer’s disease (AD) is the most common type of
dementia, accounting for 60% to 80% of dementia cases. It is
reported that about 11% of people aged 65 years and older have
AD, and the highest risk is among those aged 85 years and
older (32%) (Alzheimer’s Association, 2015). Considering its
high prevalence and devastating effect, it is critical to understand
the progressive course of dementia.

The rate of progression of dementia is highly variable;
investigating patterns of its progression is, therefore, a valuable
research avenue. Mild cognitive impairment (MCI) is often
regarded as an intermediate state on a one-way path from
normal cognition to dementia (Morris et al., 2001). Patients
with MCI experience mild but measurable changes in thinking
abilities; these changes are noticeable to the person affected
and to family members and friends, but do not affect an indi-
vidual’s ability to carry out everyday activities (Alzheimer’s

Association, 2016). MCI includes heterogeneous types of cog-
nitive dysfunction that manifest as symptoms of cognitive
decline. Furthermore, in a review of population-based studies,
adjusting for sample size, Mitchell and Shiri Feshki (2009)
found that the cumulative proportions of patients with Mayo-
defined MCI who progressed to AD, to vascular dementia,
and to other forms of dementia were 28.9%, 5.2%, and 21.9%,
respectively. Therefore, not all patients with MCI deteriorate
over time.

Due to the heterogeneity of patients with MCI, the pattern
of cognitive decline is still largely unpredictable to patients and
their families; it is essential to predict how severe cognitive and
functional disability will be over time, or for how long patients
can be expected to survive. This knowledge would help patients
and families to plan for management of the disease, as well
as future financial and other care arrangements. Knowledge
about the progression of cognitive decline would also facil-
itate the planning of clinical trials for proposed treatments.
Furthermore, it would help establish eligibility criteria for ser-
vices where functional ability assessment is needed to receive
reimbursements, thus providing a reference for governments or
insurance agencies to estimate medical costs.

In past studies, the following factors have been reported as
those that most commonly indicate a fast progression of cogni-
tive decline: female sex (Tschanz et al., 2011; Peters et al., 2015);
fewer years of education (Shadlen et al., 2005); early-onset
cognitive impairment (before the age of 65 years) (Lindsay
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et al., 2002); vascular health conditions (Baumgart et al., 2015);
and the presence of psychosis symptoms (Lyketsos et al., 2002;
Mortimer et al., 1992). The subjects of these studies are mostly
community dwelling, and sufficiently strong evidence has been
established that those factors influence dementia progression
rate.

Several quantitative studies have investigated patterns of
dementia progression. Chaves et al. (2010) performed a Cox
regression analysis for survival and found that vascular risk
factors and less education are strong predictors of a fast decline.
A mixed survival model was used by Yu and Ghosh (2010) to
jointly estimate dementia onset and death. They reported that
the acceleration of cognitive decline in subjects with higher
education levels occurs later, but at a faster rate than that in
subjects with lower education. Chaves et al. (2010) and Yu
and Ghosh (2010) placed greater emphasis on survival and
time point estimation of dementia onset. Wilkosz et al. (2009)
found that 201 patients with AD showed six trajectories with
significantly different courses and rates of cognitive decline. In
their study, the initial Mini-Mental State Examination (MMSE)
score and age were the concomitant variables included in their
latent class trajectory model. They found that more severe
psychotic symptoms increased the probability of a more rapid
cognitive decline, and that APOE &4 was not associated with
any of these distinct trajectories. Although the findings are quite
informative, the latent class trajectories were from a relatively
small sample. The study did not make predictions about future
cognitive decline. None of these studies formulated a prediction
model to explain the influence of risk factors in a trajectory
pattern for cognitive decline.

In order to mitigate the research gap of the personalized tra-
jectory estimation model, our study aims to establish a robust,
specific, and accurate quantitative prediction model with low
cost and high efficiency. The trajectory prediction model for
cognitive decline would not only explain the known cognitive
decline course but also make an effective prediction about
future trends of cognitive decline based on individual medical
profiles. The prediction models were developed from a 10-year
longitudinal patient registry of patients diagnosed with non-
normal cognition. The selected model is ready to use and can be
implemented in non-clinical settings without needing to acquire
biomedical specimens or radiological results. It would be a prac-
tical tool for medical providers, caregivers, and other interested
parties to predict the cognition deterioration course for patients
with cognitive decline onset. We used the Clinical Dementia
Rating Score Sum of Boxes (CDR SUM) score as an overall indi-
cator of cognitive and functional levels and explored the typical
trajectory of those who had prevalent cognitive decline. The
Washington University CDR is a global assessment instrument
that is regularly used in clinical and research settings to assess
dementia severity (O’Bryant et al., 2008). On the CDR, cogni-
tive functioning is rated in six domains: memory, orientation,
judgment and problem solving, community affairs, home and
hobbies, and personal care. The CDR evaluation is administered
by a clinician or trained health professional using a structured
form that is based on informants’ (close friends, families,
or caregivers of the patient) reports, as well as behavioral and
neurological examinations of the patient. A CDR-0 denotes nor-
mal cognition, and CDR-3 represents the most severe stage of

dementia. The CDR SUM score is the sum of each of the domain
box scores, with scores ranging from 0 to 18. O’Bryant ef al.
(2008) studied dementia using categories based on the range of
CDR SUM scores, and classified CDR SUM scores of 0.5-4.0
as questionable cognitive impairment, 4.5-9.0 as mild demen-
tia, 9.5-15.5 as moderate dementia, and 16.0-18.0 as severe
dementia. The CDR SUM score gives practical information on
how well a patient can function independently, and provides
a better understanding of cognitive well-being. Moreover, its
precision allows changes over time to be tracked (Howieson
et al., 2008).

For longitudinal studies, multilevel (ML) models were widely
used in disease progression modelling, including periodon-
tal disease (Gilthorpe et al, 2003), chronic kidney disease
(Eriksen et al., 2006), multiple sclerosis (Lawton et al., 2015),
and HIV/AIDS (Seid et al., 2015). A semiparametric mixed-
effect (SME) model was used to capture the trajectory of lung
function decline in cystic fibrosis (Szczesniak et al., 2013). As
a pioneer study that establishes a sound prediction model to
quantify cognitive decline trajectory, we compared the two
modeling applications on estimating CDR SUM score for
patients with cognitive decline. We jointly used correlation
coeflicient and Nakagawa and Schielzeth’s R-square to evaluate
the goodness-of-fit of models. The prediction model may help
families and healthcare providers to better understand cognitive
decline trajectory and make a management plan; furthermore,
it can help to quantify and discern treatment effects in future
medical trials for dementia.

The rest of the article is organized as follows. Section 2
presents the data for developing models and explains the two
modeling methods. Section 3 details the model application,
model evaluation, model validation with test data, and analyzed
prediction outcomes. Section 4 summarizes the findings in the
context of the literature and discusses the limitations and future
work.

2. Methods

Mixed-effects models are very powerful tools for modeling lon-
gitudinal data, which involve repetitive measurements on the
same subject over a period of time. These data may also contain
many covariates and complex relationships. To map the pattern
underlying these variables, a multilevel (ML) model and a semi-
parametric mixed-effects (SME) model were used to fit subject-
specific curves. In the following, we first describe the data used,
followed by a discussion of the ML and SME models.

2.1. Data

The data were publicly available and provided by the National
Alzheimer’s Coordinating Center (NACC) Uniform Data Set
(UDS) database. The NACC database is one of the largest and
most comprehensive databases of its type in the world. The
data are contributed by 39 past and present Alzheimer’s Disease
Centers supported by the U.S. National Institute on Aging.
NACC UDS is a cumulative database including demographic
information, clinical evaluations, and neuropathology data from
2005 to the present. A description of the dataset can be found
in Morris et al. (2006) and Weintraub et al. (2009). It is not a



population-based database. The subjects were referred by clin-
icians, self-referred by patients or family members, or actively
recruited through community organizations. Only those who
were diagnosed as having non-normal cognition were included
in this study. All of the patients visited the center or made
contact with the center annually until they died or withdrew.

We first prepared a training data set from patient data for
the period September 1, 2005, through September 1, 2015, to
investigate the relationships between variables, and then used
test data for model validation. The training data set was obtained
from Caucasian patients who were deceased by the time of data
acquisition for model building, so that complete profiles of each
patient from the first visit to death were included. Patients who
had made only one visit were excluded. Assuming missing data
arising at random, those who had missing or unknown values
in any of the predictive variables were excluded. A total of 2669
patients and 9615 records were included in the training data set
after application of these exclusion criteria.

In the test data, we included Caucasian patients who were
surviving at the cut-off date of December 1, 2015 (beginning in
September 1, 2005) from the NACC UDS database. After data
cleaning of unknown or missing values in any predictive vari-
ables, the final test data consisted of 16 783 observations of 2996
patients. There were no overlapping in test data and training
data because of the different period and different survival sta-
tus. The overall population was highly variable in levels of cog-
nitive decline (Fig. 1). As also seen in the current cohort, a num-
ber of longitudinal cohort studies have shown that patients with
dementia do not display linear cognitive decline (Howieson et al.
2008; Doody et al. 2010; Cloutier et al. 2015), which indicates
that a traditional linear regression model would not be sufficient
in simulating the trajectory of cognitive decline.

2.2. Multilevel model

The ML model (also known as the hierarchical linear model or
a nested data model) recognizes that data has hierarchical struc-
tures that allow each level to have residual components. Before
modeling a relationship between a response variable and covari-
ates, the data structure must be understood. The structure of
data can be viewed as levels of grouped effects that lead to final
observation results. The ML model uses the regression method
and allows variables to have multiple levels with a zero-mean
variance. In the present study, time was regarded as a first-level
effect, and other time-related effects (including time-constant
and time-varying effects) were regarded as second-level effects.

This approach assumes that CDR SUM scores are explained
by the time since the onset of cognitive decline and a normally
distributed residual. Likewise, the effect of time is explained by
a superordinate effect (time-constant and time-varying covari-
ates) and a normally distributed residual. A linearity assumption
is not sufficient to capture the change in the trajectory curves, as
shown in Fig. 1. We tested polynomial models with quadratic
and cubic terms, but found that the slope of the cubic term was
zero and could be discarded. Therefore, a quadratic curve was
selected for the model. The model can be expressed as:

Level 0

yij = Boij + Puijtij + ,32ijt,'2j +€ij (1)

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING . 3

Level 1
Boij = aoij + Ubij )
Biij = a1ij + Uyjj (3)
Baij = azij + Uaij (4)
Uoij 0 ¢ 0 0
with | Uy | ~N |0, 0 ¢f, 0
Uaij 0 0 0 ¢
Level 2
aoij = booo + bior *tx + Vi (5)
ayij = bioo + bror *tx + Vi (6)
azij = bago + bao1 * tx + Vi (7)
c d
tx = Z O4%iq + Z 1Zijl (8)
q=1 I=1
VOij 0 ]/020 0 0
with | Vi | ~N [0, 0 yj 0
Vaij 0 0 0y}

In level 0, y;; is the observed CDR SUM score for subject i at
time j. Term B;; is the random intercept, and B, and B are the
random individual slope of the linear term #; and the quadratic
term tizj at time j. Term ¢; is the duration since onset of cognitive
decline for subject i at time j. The term ¢;; represents the within-
patient variation.

Inlevel 1, the random intercept and random slope are divided
into two parts, a and U (effect of time and residuals). In level
2, term x;; is a c-dimension time-constant covariance matrix
for subject i. Term zyjis a d-dimension time-varying covariate
matrix for subject i at time j. It includes all of the changing fea-
tures of subject i at time j. 6, and y; are corresponding parame-
ters for terms x;5 and z;1. Vo, V15, and Vy;; are residuals that have
variances of ¥, v, and y5, respectively. This ML model struc-
ture incorporates factors in a manner that accounts for errors at
each level. It also determines the impact of the level 1 factor and
level 2 factors on individual observations. Furthermore, it con-
trols the specification of the covariance matrix for the residuals.

2.3. Semiparametric mixed-effects model

The semiparametric modeling method has increasingly been
used to capture subtle changes in longitudinal data. In many
regression models, an assumption of normality is needed. How-
ever, in the SME model, ordinal variables, even with small sam-
ple sizes, can be fitted in nonparametric models. In addition, the
normality assumption is not required.

The effect of time and other covariates on the CDR SUM
score (the response) is complicated. Nonlinearity itself cannot
fully explain the heterogeneous shape of trajectories. Therefore,
the penalized spline approach and its mixed-model represen-
tation is a good solution for featuring individual profiles. We
assume that CDR SUM score, the response variable y;; in Equa-
tion (9), is the combination of f(t), linear expression of fixed
effects of x;; and z;;, and measurement error &;;. We will dis-
cuss two different scenarios based on within-patient correla-
tion assumption. Equation (9) is the first case, an SME model
without within-patient correlation, assuming CDR SUM scores
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Figure 1. (A, B, C, and D). Forty individual CDR SUM score trajectories. Each figure is a plot of 10 patients’ CDR SUM score records. Each colored line represents an individual
patient’s trajectory. This figure was randomly generated from the 2669 patients’ records in training data, obtained from the NACC database in September 2015. The x-axis
represents the duration since cognitive decline onset; the y-axis represents the CDR SUM score.

from the same patient are independent. We define the measure-
ment error g;; following a normal distribution with standard

variance o 2.

c d
yij = f O+ Opxig + Y iz + €
q=1 1=1
€ij ~N(0, o) 9)
Similar to the definition in Equation (8), term x;; is a
c-dimension time-constant covariance matrix for subject i.
Detailed variables in this study will be discussed in Section 3.1.
64 and p; are the coefficients for terms x;; andz;;. Term f{(t) is a
penalized spline smooth function that reflects the overall trend
of the CDR SUM score with time, as shown in Equation (10):

K
f)=Bo+Pit + Bot” + Y e (t — )}
k=1
< kg < max (t)

<Ky < Ky <--- (10)

where Sy, B1, and B, are the coefficients for intercept, linear,
and quadratic terms, respectively. In Equation (10), u refers to
the weight of each linear function, and (¢ - ki) 4 refers to the kth
linear function with a knot at « . The number of knots K is fixed
and large enough to ensure the flexibility of the curve. «; ...,
kx are a set of distinct fixed knots ranging from t to max(t),
where ¢ is the whole sample of years since onset. The knots
were chosen as quantiles of ¢ with probabilities 1/(K+1), ...,
K/(K+1). The method used to select the number of knots and
the codes associated with selection have been documented by
Ruppert (2002) and Durban et al. (2005). We use truncated
lines as the basis for regression:

ift—kr>0
cift—ke <0

t — Ki

(t_Kk)+ = { 0 (11)

Referring to Equation (10), the basis of the spline model for
f(t) is

(Ltt> (t—k1)y oon (E— ki) g (E— K1) % e (8 —kg) ]

(12)



In Equation (9), which represents SME model with
uncorrelated random effects, we assume that the observations
within the subject i are independent. However, for longitudinal
data, it is possible that observations of the same subject may
correlate with each other along time points. This is the second
scenario, the SME model with correlated random effects. The
term &;; in Equation (9) no longer represents random variation;
instead, it reflects the within-subject variation, comprising an
exponential correlation function §;(¢;) and measurement error
wjj, as shown in Equation (13):

K
f) = Bo+ Bt + Bt + D i (t — k)
k=1
€ij = 8 (tij) + wjj (13)
where w;; ~ N(0, o2). The distribution of § i(tij) follows a mul-
tivariate normal density with mean 0 and variance-covariance
matrix X.

8 (t) ~ MYN (0. Y") (14)
Additionally, §;(t;) follows an exponential correlation func-
tion p(At).

At

p(A) = Corr(8; (o) , 8 (At +10)) = e)  (15)
where 7 is the rate of decay for the correlation function for time
between observations of |At|. p() allows for observations fur-
ther apart in time to have a reduced correlation. Term wj; is the
residual component.

In the following, we have defined the SME model with
uncorrelated random effects as the SME(N-cor) model and the
SME model with correlated random effects as the SME(w-cor)
model.
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3. Results

3.1. Model application and evaluation

The goals of this study were to identify the influential factors
that can predict CDR SUM scores and to develop a robust model
to make predictions from existing patient profiles. We made
assumptions that certain factors are associated with the course
of decline and that patients who share the same profile would
have a similar developmental trajectory. Univariate regression
smoothing and a least-square means comparison were used to
examine if the candidate variables were significant enough to
build the model.

Our study examined 20 risk factors that were identified in
previous medical literature (Fig. 2). The time-constant variables
include duration since the onset (time), sex, years of education,
and onset age. The time-varying variables are vascular health
conditions and neuropsychiatric symptoms. These factors are
also available in the NACC UDS database. Duration, education
level, and onset age are derived variables that were created
from the dataset. Vascular health conditions included heart
attack/cardiac arrest, transient ischemic attack, atrial fibrillation,
stroke, and diabetes. The neuropsychiatric symptoms covered
12 domains: delusions, hallucinations, agitation, depression,
anxiety, elation/euphoria, apathy/indifference, disinhibition,
irritability, aberrant motor behavior, nighttime behavior, and
changes in appetite or the consumption of certain foods.

Although there is a tendency to perform trajectory studies
for different dementia types, such as AD, Lewy body dementia,
and Parkinson’s dementia, we did not consider the diagnosis of
dementia type as a parameter in the current study. The first rea-
son for this is that the diagnostic methods are not sufficiently
accurate to classify patients with enough precision to carry out a
study based on diagnostic results. In medical diagnoses, sensitiv-
ity and specificity measure the ability to identify those with the

Time-varying
Time-constant iaiales
covariates
Vascular Health Neuropsychiatric
condition symptoms
. L3
N
- Male
il o)
; i - Yes - Yes
/ Heart attack Diabetes .
- Absent - Absent
: - Recent/Active - Recent/Active ¥ g
- above high - Remote/Inactive - Remote/Inactive | Depression
school 2
- otherwise E

Stroke

- Absent
- Recent/Active

- Recent/Active
- Remote/Inactive

Atrial Fibrillation

- Absent
- Recent/Active
- Remote/Inactive

- Remote/inactive

Figure 2. Levels of factors associated with the CDR SUM score in the present study. Note: The first-level factor is time, the second-level factors are time-constant factors

and time-varying factors, and the lower branches are 20 factors with the NACC codes.
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Table 1. Characteristics of selected patients from NACC database data between September 2005 and September 2015.

Age of onset
Young Middle old
Patient characteristics (<66y) (66 to 86) (>86y) Total N (%)
Gender (Male, %) 559 (64.25%) 978 (58.67%) 58 (43.94%) 1595 (59.76%)
Education level > 12y, % 831(95.52%) 1536 (90.91%) 120 (92.14%) 2487 (93.18%)

Vascular health conditions, N (%) of disease absence

CVHATT=0 810 (93.1%)

CVAFIB=0 813 (93.45%)
CBSTROKE =0 817 (93.91%)
CBTIA=0 815 (93.68%)
DIABETES =0 779 (89.54%)

1451 (87.04%)
1344 (80.62%)
1460 (87.58%)
1436 (86.14%)
1409 (84.52%)

120 (90.91%)
104 (78.79%)
107 (81.06%)
108 (81.82%)
121(91.67%)

2381(89.21%)
2261 (84.71%)
2384 (89.32%)
2359 (88.39%)
2309 (86.51%)

Neuropsychiatric symptoms during the last visit, N (%) of symptom absence

DEL=0 690 (79.31%) 1308 (78.46%) 116 (87.88%) 2114 (79.21%)
HALL=0 702 (80.69%) 1411 (84.64%) 117 (88.64%) 2230 (83.55%)
AGIT=0 458 (52.64%) 979 (58.73%) 97 (73.48%) 1534 (57.47%)
DEPD =0 535 (61.49%) 1086 (65.15%) 92 (69.7%) 1713 (64.18%)
ANX=0 462 (53.1%) 1027 (61.61%) 105 (79.55%) 1594 (59.72%)
ELAT=0 786 (90.34%) 1588 (95.26%) 128 (96.97%) 2502 (93.74%)
APA=0 335 (38.5%) 748 (44.87%) 85 (64.39%) 1168 (43.76%)
DISN =0 569 (65.4%) 1306 (78.34%) 114 (86.36%) 1989 (74.52%)
IRR=0 539 (61.95%) 1037 (62.21%) 100 (75.76%) 1676 (62.80%)
MOT=0 490 (56.32%) 1211 (72.65%) 121 (91.67%) 1822 (68.27%)
NITE=0 502 (57.7%) 1045 (62.69%) 91(68.94%) 1638 (61.37%)
APP =0 504 (57.93%) 1139 (68.33%) 102 (77.27%) 1745 (65.38%)
Total N (%) 870 (32.6%) 1667 (62.46%) 132 (4.95%) 2669 (100%)

Note: Codes for gender: Female = 2; Male = 1. Abbreviations: CVHATT: heart attack/cardiac arrest; CBTIA: transient ischemic attack; CVAFIB: atrial fibrillation; CSTROKE:
stroke; DIABETES: diabetes; DEL: delusions; HALL: hallucinations; AGIT: agitation; DEPD: depression; ANX: anxiety; ELAT: elation/euphoria; APA: apathy/indifference; DISN:
disinhibition; IRR: irritability; MOT: aberrant motor behavior; NITE: Nighttime behavior; APP: appetite/eating change in type of food.

disease correctly (true positive rate) and those without the dis-
ease (true negative rate). A study by Beach et al. (2012) reported
that the sensitivity in the diagnosis of AD ranged from 70.9% to
87.3%, and specificity ranged from 44.3% to 70.8% for NACC
data. Clark et al. (2011) reached a similar conclusion, stating
that 10% to 20% of patients clinically diagnosed with AD did not
have AD pathology. The presence of mixed dementia is another
factor that makes diagnosis difficult, because of the coexistence
of more than one neuropathology. A sample study by Schnei-
der et al. (2007) showed that, among community-dwelling older
individuals with dementia, 54% showed pathological evidence
of one or more coexisting dementias. All of these factors make it
difficult to make rigorous diagnoses. The inclusion of the het-
erogeneous cognitive decline patients would add variance to
the models, but would help to access a more general cognitive
decline trajectory that does not need specific diagnoses.

3.2. Data exploration

In the training data, the mean of duration from age of onset
to death was 8.2 y (standard deviation = 3.9 y; range = 0.2
to 39.3 y). The mean age of onset (first appearance of cogni-
tive decline symptoms) was 70.4 y (standard deviation = 10.8 y;
range of onset age = 29 to 103 y). Table 1 shows the patient char-
acteristics at three levels of onset age—young (< 66 y), middle
(> 66 y and < 86 y), and old (> 86 y)—including sex, edu-
cational level, vascular health condition, and neuropsychiatric
symptoms.

3.3. Model fitting and selection

The variables were tested in a univariate analysis, which is
a univariate regression on the CDR SUM scores over all the

patients in the training data. Those factors significant in a
least-square means t-test were entered into the model. In
addition to the 20 variables shown in Fig. 2, three second-
level interaction terms were included (duration x onset age,
duration x gender, and duration x education level). Other
interaction terms are not statistically significant (p > 0.05) with
minimal coefficient factors; furthermore, other interactions
have no medical report supporting their effect on cognitive
decline. Therefore, we eliminate other interaction terms after
preliminary fitting of the complete models. To obtain less
biased estimates of the variance terms, restricted maximum
likelihood was used in model fitting. Since the CDR SUM score
is a psychometric scale, floor and ceiling effects corresponded
to the minimum and maximum scores obtainable (0-18). Pre-
dicted values smaller than 0 and larger than 18 were therefore
truncated to be 0 and 18, respectively. In order to examine
the goodness-of-fit of the two types of modeling methods,
model selection criteria must be directly comparable between
different models, and be interpretable in terms of the informa-
tion content of the data. Therefore, Nakagwa and Schielzeth’s
RZ, . (Nakagawa and Schielzeth, 2013) is preferred to Infor-
mation Criteria, namely AIC (Akaike Information Criterion)
and BIC (Bayesian Information Criterion). AIC and BIC were
widely used as model selection criteria. However, they do not
provide information about the absolute model fit and vari-
ance explained by a model (Nakagawa and Schielzeth, 2013).
Marginal R?> and Conditional R? in Nakagwa and Schielzeth’s
R%,, are dimensionless, and have intuitive interpretation,
and values from different models are comparable. Marginal R
(R&Lvpi(m)) €valuates the percentage of variance explained by
fixed factors and is defined as Equation (16). Conditional R?
(RZGLMM( o) evaluates the percentage of variance explained by
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Table 2. Model fit and parameter estimates, CDR SUM score in NACC data, September 2005 to September 2015.

SME (N-cor) Model

95% CI

Parameter Estimate p-value Lower Upper
(Intercept) 259 0 156 3.63
DURATION 0.03 0.83 —024 03
I(DURATION"2) 0.07 0 0.06 0.08
Age of onset: Old — 074 0.03 -4 —0.08
Age of onset: Young 0.45 0.07 —0.04 0.93
Education level =12y —1.42 0 —2.22 —0.63
SEX 0.22 03 —0.19 0.63
CVHATT —0.12 0.06 —0.25 0.01
CVAFIB —0.05 0.39 —0.15 0.06
CBSTROKE 0.15 0 0.05 0.25
CBTIA —0.07 0.06 —0.14 0
DIABETES 0.01 0.96 —024 0.25
DEL 0.91 0 0.71 11
HALL 136 0 113 1.59
AGIT 0.54 0 039 0.69
DEPD —0.25 0 —039 —0.1
ANX 0.29 0 0.14 0.43
ELAT 0.1 0.44 —0.18 0.4
APA 0.8 0 0.66 0.94
DISN 0.21 0.01 0.05 0.38
IRR —0.44 0 —0.59 —-03
MOT 1.08 0 0.92 124
NITE 0.23 0 0.09 0.37
APP 0.62 0 0.47 0.76
DURATION: Age of onset: Old 0.2 0.06 —0.01 0.42
DURATION: Age of onset: Young —0.02 0.68 —0.14 0.09
DURATION: SEX 0.17 0 0.07 0.28
DURATION: Education level > 12y 0.17 0.09 —0.03 0.38

Abbreviations: CVHATT: heart attack/cardiac arrest; CBTIA: transient ischemic attack; CVAFIB: atrial fibrillation; CSTROKE: stroke; DIABETES: diabetes; DEL: delusions; HALL:
hallucinations; AGIT: agitation; DEPD: depression; ANX: anxiety; ELAT: elation/euphoria; APA: apathy/indifference; DISN: disinhibition; IRR: irritability; MOT: aberrant motor

behavior; NITE: Nighttime behavior; APP: appetite/eating change in type of food.

the entire model and is defined as Equation (17). The other
measurement is Pearson correlation coefficient r between the
fitted and the observed values as Equation (18). It measures the
strength and direction of the linear relationship between the
fitted and observed values. The higher the correlation, the better
the fitted values from a given model simulate the observed value.

2

o
R2 - / 16
GLMM(m) UJ% Y oltolial (16)
o2+ Y o2
7 ]
RZGLMM(C) = (17)

o} + 0l +ol+o]
n (0 yars * ysie) = (X yare) (X ys)
\/I:” Zyobsz - (ZyobS)z] [” nyitz - (ny”)z]

(18)

2

where o 7 is the variance of fixed effects in the model, 012 is

the variance of the Ith random factor,o? is additive dispersion
variance, and o is distribution-specific variance (Nakagawa
and Schielzeth, 2010). y,ps are the observed CDR SUM scores,
and yg; are the fitted values by the proposed models. Analysis
was implemented in R software (version 3.2.5; R Foundation
for Statistical Computing, Vienna, Austria).

The SME(N-cor) model had Pearson correlation coefficient
r of 0.93, marginal R* of 0.41, and conditional R*> of 0.96.
The SME(w-cor) had Pearson correlation coefficient r of 0.73,
marginal R? of 0.44, and conditional R? of 0.64. The ML model

had a correlation coefficient of 0.52, marginal R* of 0.47, and
conditional R? of 0.87. Among all three model selection indica-
tors, the SME(N-cor) model outperformed the other two mod-
els. Although the predicted values by ML model had remark-
ably higher marginal and conditional R? than by SME(w-cor),
indicating the larger proportion of the variance explained by
both fixed effects and the entire model, the correlation coeffi-
cient between observed values and predicted values was only
0.52, which is the lowest among the three models. The SME
model without the random effects correlation fit the training
data remarkably well, with a correlation of 0.93 between the fit-
ted and observed values. The hypothesis that the CDR SUM
score within the same subject would have an exponential corre-
lation was not supported. The residual plot for the SME(N-cor)
model was approximately normally distributed, indicating that
the model is adequate. Therefore, the SME(N-cor) model was
preferred over the SME(w-cor) model and the ML model, and
was selected for prediction. The parameters in the SME(N-cor)
model are listed in Table 2.

3.4. Testing the model for validation

To test if the model was robust, 5000 observations were ran-
domly drawn 10 times from the test data pool and entered into
both SME models. Pearson correlation between the predicted
CDR SUM by the SME(N-cor) model and observed CDR SUM
was assessed. The results were stable, and again, the predic-
tion from the SME(N-cor) model was significantly better than
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Figure 3. The effect of each influential factor in the SME(N-cor) model. Variables in the model are presented in the left-hand column; the blue bars represent the influence
of the factor on the CDR SUM score; the numbers on the right side of the bar are the estimated coefficients of the factors. Abbreviations: CVHATT: heart attack/cardiac
arrest; CBTIA: transient ischemic attack; CVAFIB: atrial fibrillation; CSTROKE: stroke; DIABETES: diabetes; DEL: delusions; HALL: hallucinations; AGIT: agitation; DEPD: depres-
sion; ANX: anxiety; ELAT: elation/euphoria; APA: apathy/indifference; DISN: disinhibition; IRR: irritability; MOT: aberrant motor behavior; NITE: nighttime behavior; APP:

appetite/eating change in type of food.

from the SME(w-cor). The mean of the correlation between the
predicted CDR SUM from SME(N-cor) and the observed CDR
SUM was 0.41 (variance of 9.50 x 10~>). The mean of the corre-
lation between the predicted CDR SUM from SME(w-cor) and
the observed CDR SUM was 0.39 (variance of 3.16 x 10~>). Fur-
thermore, the Mean Squared Errors (MSE) calculated for the
SME(N-cor) model and SME(w-cor) model were 55.93 (vari-
ance of 107.62) and 65.12 (variance of 131.47), respectively. The
higher correlation and smaller MSE are the substantial evidence
of higher-quality prediction from the SME(N-cor) model than
its counterpart.

Although the correlation was moderately positive, it can be
considered as a strong correlation in a human-related study. It
should be kept in mind that correlation coefficients are very sen-
sitive to outliers. Therefore, the SME(N-cor) model was consid-
ered as representative of typical dementia progression processes,
and it was selected for further analysis. Fig. 3 illustrates the mag-
nitude of the estimated coeflicients for the SME(N-cor) model.
Fig. 4 is the estimated coeflicients of the SME(N-cor) model in
a sorted order.

Neuropsychiatric symptoms, including delusion, hallucina-
tion, agitation, anxiety, apathy, motor disturbance, and appetite
change, were all indicators of higher CDR SUM scores. His-
tory of stroke, presence of disinhibition, and nighttime behav-
ior disturbances (awakening during the night, rising too early,
or taking excessive naps during the day) were also associated
with higher CDR scores, but to a lesser extent. Furthermore,
along with duration, females showed higher CDR SUM scores
than their male counterparts. This could be the result of a longer
survival time for females.

An older onset age (>86 y), higher level of education (=12
education years), and presence of irritation were indicators of a
lower CDR SUM score. Education level was the most influential

CDRSUM score{predictted)

16 18 20 22 24 26 28 30 32 34 36 38

Duration

0 2 4 6 B 10 12 14

Figure 4. Point estimation of nonparametric penalized spline smooth function f{(t)
obtained from SME(N-cor) model for patients in NACC UDS data from September 1,
2005, to September 1, 2015. The x-axis represents the duration (in years) since cog-

nitive decline onset; the y-axis represents the CDR SUM score. A 95% confidence
interval lies in the grey range area.



factor among these three. Depression had a minimal negative
effect on the CDR SUM score.

Among the factors we tested in the SME(N-cor) model,
the statistically non-significant factors were young onset age
(<66 ), sex, heart attack/cardiac arrest, atrial fibrillation, tran-
sient ischemic attack, diabetes, the presence of elation, an inter-
action between duration and onset age, and an interaction
between duration and education level. For these factors, we
found a likelihood exceeding 95% that these factors had no effect
on the CDR SUM prediction outcome. The performance of the
model would decrease by 50% if the categorical factor of APOE
€4 presence was added into the model. This could be because the
distribution of APOE ¢4 alleles in the training data is not consis-
tent within the population and caused overfitting of the model.
Furthermore, this also agrees with the conclusion that APOE ¢4
does not significantly influence the patterns of dementia pro-
gression (Kleiman et al., 2006; Cosentino et al., 2008; Wilkosz
et al., 2009).

3.5. CDRSUM prediction outcome and examples

The trajectory of the CDR SUM score differed according to
model type. The semiparametric model gives an estimation of
CDR SUM score by combining the penalized spline smooth
function of time and the additive effect of other covariates. The
nonparametric penalized spline smooth function f(t) reflects
the overall trend of CDR SUM score with time. Fig. 4 is the
point estimation of f{t)obtained from the SME(N-cor) model for
patients in NACC UDS data from September 1, 2005, to Septem-
ber 1, 2015. The curve shows that the general trend of increasing
CDR SUM score with time, whereas from year 4 to year 8 there is
a steady period followed by a rapid increasing trend again. After
year 20, the CDR SUM score stabilized at 18 points, which is
the ceiling level of the CDR SUM score scale. The estimation of
CDR SUM score is made based on f(t) and the fixed and random
effects in the SME(N-cor) model.

In order to visualize the estimation of the CDR SUM score
trajectory, we randomly selected four patients from the train-
ing data pool and plotted the actual CDR SUM score recorded
in NACC UDS data and the predicted CDR SUM score by SME
(N-cor) model (Fig. 5). The MSE for predicted and actual CDR
SUM score is 2.475 for the 14-point estimation in total. The
SME(N-cor) model gave a reasonably good estimation of the
CDR SUM score trajectory. The predicted CDR SUM score for
the last visit in Fig. 5 (D) had a slight drop because of drug
intervention on agitation and anxiety. The psychiatric symptoms
were suppressed; thus, their non-existence decreased the CDR
SUM score. Besides therapeutic intervention, it should be noted
that both environmental and lifestyle factors, such as diet, phys-
ical activities, and social connection, can play a role in cognitive
decline progression. Therefore, adjustment of prediction results
should be made depending on individual cases in a practical
model application.

4. Discussion

In order to simulate and estimate the individual trajectory of
cognitive decline in dementia, we used multi-level polynomial
regression and semiparametric methods, respectively. Instead
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of using Information Criterion, we applied Nakagawa and
Schielzeth’s R, \\; and Pearson correlation coefficient between
fitted and observed value as criteria for model selection. Nak-
agawa and Schielzeth’s R}, represents the goodness of fit
and has an intuitive interpretation of the proportion of variance
explained by fixed effects and the entire model. Pearson corre-
lation coefficient gives a direct measurement of the linear corre-
lation between fitted and observed CDR SUM scores, which is
interpretable and can be compared among results from different
modeling techniques.

The semiparametric model without correlation characterized
the patient features that influence the rate of cognitive decline
and provided a quantitative description of the trajectory of
cognitive decline with significant accuracy. Our study revealed
that the progression of dementia can be predicted using demo-
graphic and clinical characteristics of patients. Both SME mod-
els (with and without correlation) had a better fit and yielded
better prediction results than the ML model. The prediction
results of these two SME models showed that avoiding incorpo-
ration of longitudinal correlation improved prediction accuracy.
The SME(N-cor) model was selected as a reliable tool for esti-
mation of the CDR SUM in relation to cognitive decline. More-
over, the model can potentially be applied to clinical monitoring,
dementia prognosis, and reference for medical trials, as patient-
specific trends can be obtained.

4.1. Findings in the context of the literature

Our study findings support the conclusions of the Cache County
Dementia Progression Study (Tschanz et al., 2011); namely, that
a lower level of education and at least one clinically signifi-
cant neuropsychiatric symptom at baseline are predictive of a
shorter time to the progression to severe dementia. Moreover,
we identified that the presence of elation does not necessarily
produce a higher CDR SUM score. Our results also support the
finding that higher education levels are associated with lower
CDR SUM scores (Chaves et al., 2010). This could represent
support for the cognitive reserve hypothesis, whereby patients
with dementia and higher educational status have a higher
cognitive reserve and, thus, a slower cognitive decline (Evans
et al., 1993; Letenneur et al., 1994; Stern, 1994, 2012; Stern et al.,
1995). Our findings also indicated that stroke has a modest
impact on fast cognitive decline (Solfrizzi et al., 2004). Ott et al.
(1999) claimed that patients with diabetes have a higher risk
of dementia; however, diabetes was not associated with higher
CDR SUM scores in the present study. This could be because
diabetes is only a risk factor for dementia, and not for its faster
progression.

The semiparametric method in our study combined penal-
ized regression splines and mixed-effects modeling, which pro-
vide individualized approximations of nonlinear estimation
while preventing over-fitting. It is, therefore, able to capture sub-
tle changes and is more accurate than the mixed model used
in the Cache County Dementia Study (Tschanz et al., 2011).
Indeed, our SME model produced a more elaborate curve fit
than its ML counterpart. Furthermore, we found no evidence
of a correlation between CDR SUM scores of the same subject.
This suggests that the CDR SUM scores at different time points
are independent of each other, and that the influence of time
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Figure 5. (A, B, C, and D). The prediction results for four randomly selected patients in training data. Red circles are the actual observed CDR SUM score, and blue triangles
are the predicted values by SME(N-cor) model. The x-axis represents the duration (in years) since cognitive decline onset; the y-axis represents the CDR SUM score.

on future scores cannot be predicted by previous scores. The
SME(N-cor) model achieved a 93% correlation of observed and
predicted values. We have, therefore, demonstrated the reliable
performance of this model in the prediction of test data, which is
of high referential value in prognosis. With further population-
based studies, more generalized conclusions can be made about
the SME model.

4.2. Limitations

Several limitations of this study should be considered when
interpreting the results. First, the samples were recruited based
on clinic visits. Therefore, there may have been a sampling
bias compared to population-based studies. It may also be more
likely that these patients were living with family or friends, had a
greater educational/professional attainment, or more awareness

of cognition impairment. Second, our study did not assess the
impact of some potentially important factors on disease progres-
sion, such as drug intake, lifestyle, social network support, treat-
ment, and quality of care received. Therefore, overall individual
cases are important in CDR SUM score prediction and should be
considered as supplementary information in prediction. Third,
our model did not consider the reversion of cognitive/functional
ability (Koepsell and Monsell, 2012). In future studies, a sub-
model would be better to represent the trajectory for individuals
who experience reversion. Finally, since pathological evidence
from a biopsy study showed a slower rate of cognitive and func-
tional decline in patients with mixed AD with vascular dementia
compared to mixed AD with Lewy body pathology (Pillai et al,
2015), a high accuracy of diagnosis in future studies would
help to improve the model and gain understanding about the
characteristics of the progression patterns of different types of
dementia.



4.3. Conclusion

The semiparametric approach is quite strong in modeling the
trajectory of cognitive decline in dementia. Our SME model
characterized patient features that influence the rate of cogni-
tive decline, and provided a quantitative description of cogni-
tive decline trajectory with a high accuracy. While some other
potentially important factors may affect the CDR SUM score,
such as drug intake, lifestyle, social network support, treatment,
and quality of care received, the model built in this study can
serve as a baseline model for physicians’ reference and can be
used to indicate individual prognoses of the progression of cog-
nitive decline. This approach is also of great value to explain and
predict outcome variables in other longitudinal studies, espe-
cially of time-series data that record time-based behavior, such
as other chronic disease registries and medical trials.
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